Heats of Formation and Singlet-Triplet Separations of Hydroxymethylene and 1-Hydroxyethylidene

Myrna H. Matus,[†] Minh Tho Nguyen,^{*,†,‡} and David A. Dixon^{*†}

Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, and Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

Received: November 23, 2005; In Final Form: March 3, 2006

Thermochemical parameters of hydroxymethylene (HC:OH) and 1-hydroxyethylidene (CH₃C:OH) were evaluated by using coupled-cluster, CCSD(T), theory, in conjunction with the augmented correlation consistent, aug-cc-pV*nZ*, basis sets, with n = D, T, Q, and 5, extrapolated to the complete basis set limit. The predicted value at 298 K for ΔH_f (CH₂O) is -26.0 ± 1 kcal/mol, as compared to an experimental value of -25.98 ± 0.01 kcal/mol, and for ΔH_f (CH:OH) it is 26.1 ± 1 kcal/mol. The hydroxymethylene–formaldehyde energy gap is 52.1 ± 0.5 kcal/mol, the singlet–triplet separation of hydroxymethylene is ΔE_{ST} (HC:OH) = 25.3 ± 0.5 kcal/mol, the proton affinity is PA(HC:OH) = 222.5 ± 0.5 kcal/mol, and the ionization energy is IE_a(HC: OH) = 8.91 ± 0.04 eV. The predicted value at 298 K for ΔH_f (CH₃C:OH) it is 11.2 ± 1 kcal/mol. The hydroxyethylidene–acetaldehyde energy gap is 50.6 ± 0.5 kcal/mol, the singlet–triplet separation of -40.80 ± 0.35 kcal/mol, and for ΔH_f (CH₃C:OH) it is 11.2 ± 1 kcal/mol. The hydroxyethylidene is ΔE_{ST} (CH₃C:OH) = 30.5 ± 0.5 kcal/mol, the singlet–triplet separation of -40.80 ± 0.35 kcal/mol, and for ΔH_f (CH₃C:OH) it is 11.2 ± 1 kcal/mol. The hydroxyethylidene is ΔE_{ST} (CH₃C:OH) = 30.5 ± 0.5 kcal/mol, the proton affinity is PA(CH₃C:OH) = 234.7 ± 0.5 kcal/mol, and the ionization energy is IE_a(CH₃C:OH) = 8.18 ± 0.04 eV. The calculated energy differences between the carbene and aldehyde isomers, and, thus, the heats of formation of the carbenes, differ from the experimental values by 2.5 kcal/mol.

Introduction

Carbenes, R_1CR_2 , contain two substituents and two nonbonding electrons at the divalent, dicoordinate carbon. They form a diverse class of reactive intermediates and play an important role in many areas of chemistry from combustion, to organic synthesis, to ligands in metal complexes to photochemistry.¹ Stable carbenes have been prepared,² but most of the simpler carbenes with small substituents R_1 and R_2 are short-lived transient and highly reactive species. Thus, the experimental determination of the thermochemical properties of carbenes is challenging and, when available, experimental results have often been the subject of much debate.

After decades of work, the heat of formation and singlettriplet separation of methylene (:CH₂, the parent carbene) have now been well established.^{3,4} Recently, work on the halogenated carbenes, in particular dichlorocarbene (:CCl₂) with an experimental singlet-triplet separation⁵ of 3 ± 3 kcal/mol, determined from photoelectron spectroscopy (PES) study of the corresponding anion, has been challenged by theory.^{6–17} Indeed, high-level quantum chemical calculations agree with each other, yielding a much larger value ranging from 19 to 23 kcal/mol for this quantity. A difference of 16-20 kcal/mol between experiment and theory is indeed too large by the current standards of computational thermochemistry. More importantly, whereas available experiment⁵ suggested a nearly degenerate ground state for :CCl₂, theory consistently demonstrates that it is a singlet. The involvement of excited electronic states in the starting anions used in the reported PES experiment has been suggested to be responsible for the discrepancy.¹⁶ For phenylcarbene (PhC:

H), the difference between the experimental standard heat of formation¹⁸ of 103.8 \pm 2.2 kcal/mol and the corresponding theoretical result¹⁹ of 111.0 \pm 2 kcal/mol is less severe, but still substantial although the computational level does not rival that used for :CCl₂.

For the hydroxyl-substituted carbenes (HOC:R) in which the π -electron donor hydroxyl group is expected to strongly stabilize the closed-shell singlet state, a few thermochemical parameters have been reported. The formation enthalpy of hydroxymethylene (HC:OH) was reported²⁰ in 1982 based on proton affinity (PA) bracketing measurements with deuterated D₂COH⁺. Observation of the deuteron abstraction reactions from the latter ion by different abstracting bases (giving two distinct isomers) indicated that hydoxymethylene is 54.2 ± 2 kcal/mol higher in energy than its formaldehyde isomer. Adopting the recent revision of the PA scale,²¹ a larger value of 60 ± 2 kcal/mol has been derived for this gap.²² However, quantum chemical calculations provided a smaller value for the HC:OH–H₂CO energy difference ranging from 50 to 55 kcal/mol.^{22–24}

1-Hydroxyethylidene (CH₃C:OH, the methyl substituted homologue of HC:OH), has been estimated from neutralization– reionization mass spectrometry (NRMS) experiments²⁵ to be about 60 and 50 kcal/mol less stable than its isomers acetaldehyde and vinyl alcohol, respectively. However the role played by the carbene in the unimolecular rearrangements between lower-lying C₂H₄O species put forward by the NRMS study was not supported by a subsequent quantum chemical study.²⁶ More recent measurements of the threshold energy for collisioninduced dissociation (CID) of protonated 2,3-butanedione in a quadrupole mass spectrometer led to a value of 16 ± 4 kcal/ mol for the enthalpy of formation of 1-hydroxyethylidene.²² Given the heat for formation of acetaldehyde as -40.8 ± 0.35 kcal/mol,²¹ 1-hydroxyethylidene lies 57 \pm 4 kcal/mol above

^{*} Corresponding author. E-mail: dadixon@bama.ua.edu.

Department of Chemistry, University of Alabama.

[‡] Department of Chemistry, University of Leuven.

acetaldehyde. Such a value is close to the earlier NRMS estimate of 60 kcal/mol,²⁴ but is significantly larger than the available theoretical results of about 51 kcal/mol obtained at the G1,²⁶ G2,²² and CBS-Q²² levels. A singlet—triplet separation of ~28 kcal/mol has been measured for CH₃C:OH in the latest MS study²² using the difference in the first and second C–H bond dissociation energies of ethanol. Earlier theoretical results for this gap range from 23 (CISD/3-21G),²⁷ to 30.5 (CBS-Q)²² to 33.0 (G2)²² kcal/mol.

Other simple substituted hydroxycarbenes including FC:OH,²⁸ HOC:OH,²⁹ H₂NC:OH,³⁰ HCC-C:OH,³¹ and HSC:OH,³² exist and some thermochemical data have been reported for these species. In view of the relatively large uncertainties on the available quantitative results for hydroxycarbenes, we have calculated their heats of formation and singlet-triplet energy gaps using high level molecular orbital theory based calculations on the basis of a method that has been developed over the past few years of extrapolating valence shell CCSD(T) calculations to the complete basis set limit using the correlation-consistent basis sets and including other smaller corrections to the total atomization energy.^{33–39} In the present work, our focus is on the simplest parent HC:OH and CH₃C:OH species, and we have used our composite approach to predict their heats of formation and singlet-triplet gaps. The present study thus constitutes a benchmark for further theoretical studies of larger carbenes.

Computational Methods

The calculations were performed by using the Gaussian-03 suite of programs.⁴⁰ and MOLPRO.⁴¹ The geometries of singlet and triplet :CH₂ were optimized at the CCSD(T) level with the aug-cc-pVnZ basis sets for n = D, T, Q, and 5. We abbreviate the basis set label to aVnZ below. The frequencies for singlet and triplet :CH₂ were calculated at the CCSDT/aug-ccpTZ level. The geometries for ¹HC:OH, ³HC:OH, H₂CO, H₂COH⁺, H₂CO⁺, and HC:OH⁺ were calculated at the CCSD(T)/aug-ccpVDZ and CCSD(T)/aug-cc-pVTZ levels and the frequencies were calculated at the CCSDT/aug-cc-pVDZ level. The geometries obtained at the CCSD(T)/aug-cc-pVTZ level were used for the single point energy calculations at the CCSD(T)/augcc-pVQZ level. The geometries for ¹CH₃C:OH, ³CH₃C:OH, CH3CHO, CH3C(OH)H⁺, CH3C:OH⁺ and CH3CHO⁺ were calculated at the $CCSD(T)/6-311++G^{**}$ level and used in single point CCSD(T) calculations with the aug-cc-pVnZ, n =D, T, Q, basis sets. The geometries were reoptimized and frequencies were calculated at the MP2/aug-cc-pVDZ level. We used the fully unrestricted formalism U/UCCSD(T) for the openshell valence correlation energy calculations done with Gaussian (some geometry optimizations). All of the final energies were calculated with the R/UCCSD(T) formalism. In this approach, a restricted open shell Hartree-Fock (ROHF) calculation was initially performed and the spin constraint was relaxed in the coupled cluster calculation.⁴²⁻⁴⁴ The CCSD(T) energies were extrapolated to the complete basis set (CBS) limit CBS energies using the following expressions,⁴⁵

$$E(x) = A_{\text{CBS}} + B \exp[-(x-1)] + C \exp[-(x-1)^2] \quad (1)$$

where x = 2, 3, and 4 for the aug-cc-pV*n*Z basis, D, T, and Q, respectively, and⁴⁶

$$E(x) = E_{\rm CBS} + B/x^3 \tag{2}$$

where x = 4 and 5 for aug-cc-pVQZ and aug-cc-pV5Z, respectively.

Smaller corrections are also required for high accuracy calculations and include core-valence corrections and relativistic corrections. Core-valence corrections, $\Delta E_{\rm CV}$, were obtained at the CCSD(T)/cc-pwCVTZ level of theory.47 Scalar relativistic corrections (ΔE_{SR}), which account for changes in the relativistic contributions to the total energies of the molecule and the constituent atoms, were included at the CI-SD (configuration interaction singles and doubles) level of theory using the ccpVTZ basis set. ΔE_{SR} is taken as the sum of the mass-velocity and 1-electron Darwin (MVD) terms in the Breit-Pauli Hamiltonian.⁴⁸ Most calculations using available electronic structure computer codes do not correctly describe the lowest energy spin multiplet of an atomic state as spin-orbit in the atom is usually not included. Instead, the energy is a weighted average of the available multiplets. The spin-orbit corrections are 0.08 kcal/ mol for C and 0.22 kcal/mol for O, both from the excitation energies of Moore.49

As there are not good anharmonic force fields available for all of the molecules of interest, we had to scale the frequencies to obtain the zero point energies. For methylene, we took the average of CCSD(T)/aug-cc-pVTZ harmonic frequency values and the experimental values for the singlet state following the recommendations of Grev et al.⁵⁰ This yields a factor of 0.983 (ZPE(best estimate)/ZPE(CCSD(T)/aug-cc-pVTZ)) for scaling the CCSD(T) ZPE's of :CH₂ (${}^{3}B_{1}$), :CH₂⁻, :CH₂⁺, and CH₃⁺. As there are no experimental values for HC:OH, we used a similar procedure to obtain a scale factor of 0.985 (ZPE(best estimate)/ZPE(CCSD(T)/aug-cc-pVDZ)) for the CCSD(T) ZPE of cis- and trans-1HC:OH, 3HC:OH, and 2HC:OH+, where the best estimate value is taken from the average of the experimental and CCSD(T)/aug-cc-pVDZ ZPEs for CH₃OH. We calculated a scaling factor of 0.976 for formaldehyde (H₂CO) and applied it to ${}^{3}\text{H}_{2}\text{CO}$, ${}^{2}\text{H}_{2}\text{CO}^{+}$, and $\text{H}_{2}\text{COH}^{+}$, For ${}^{1}\text{CH}_{3}\text{CO:H}$, ³CH₃C:OH, ²CH₃C:OH⁺, ³CH₃CHO, ²CH₃CHO⁺, and CH₃-CHOH⁺, we scaled the MP2/ aug-cc-pVDZ frequencies by a factor of 0.981 based on the average of the experimental and MP2 values for acetaldehyde (CH₃CHO). We note that the scaling factors are quite similar to each other. The calculated vibrational frequencies are given as Supporting Information.

By combining our computed ΣD_0 values with the known heats of formation at 0 K for the elements⁵¹ ($\Delta H_f^0(C) = 169.98 \pm 0.1 \text{ kcal mol}^{-1}$, $\Delta H_f^0(O) = 58.98 \pm 0.02 \text{ kcal mol}^{-1}$, and $\Delta H_f^0(H) = 51.63 \pm 0.001 \text{ kcal mol}^{-1}$), we can derive ΔH_f^0 values for the molecules under study in the gas phase. We obtain heats of formation at 298 K by following the procedures outlined by Curtiss et al.⁵²

Results and Discussion

Methylene. The :CH₂ singlet-triplet energy gap has been extensively studied theoretically since the advent of computational quantum chemistry.⁵³ The ground state ³B₁ electronic configuration is $(1a_1)^2(2a_1)^2(1b_2)^2(3a_1)^1(1b_1)^1$ and can be qualitatively described by an ROHF or UHF determinant, whereas wave functions including two reference configurations are required to represent the closed-shell singlet state ¹A₁ at the Hartree-Fock level. Such a procedure should provide a more balanced treatment of both electronic states if there are not extensive correlation corrections. The closed-shell singlet twoconfiguration wave function thus includes the SCF configuration $(1a_1)^2(2a_1)^2(1b_2)^2(3a_1)^2$ and the corresponding doubly excited configuration $(1a_1)^2(2a_1)^2(1b_2)^2(1b_1)^2$. Full configuration interaction (FCI) calculations⁵⁴ showed that truncated CI methods based on single-reference SCF wave functions often led to errors greater than 1.0 kcal/mol in the ¹A₁-³B₁ energy gap of

TABLE 1: Optimized CCSD(T) Bond Lengths (Å) and Bond Angles (deg) for CH_2 and Related Systems

molecule	basis set	r _{CH}	∠HCH
$CH_2 ({}^{1}A_1)$	aVDZ	1.1270	101.16
	aVTZ	1.1107	101.87
	expt ^a	1.11	102
$CH_2 ({}^{3}B_1)$	aVDZ	1.0943	133.10
	aVTZ	1.0792	133.62
	$expt^b$	1.0748	133.8
CH_2^-	aVDZ	1.1409	102.00
CH_2^+	aVDZ	1.1098	139.48
CH_3^+	aVDZ	1.1233	120.00

^a Herzberg G.; Johns, J. W. C. *Proc. R. Soc. London, Ser. A* **1966**, 295, 107. ^b Jensen, P.; Bunker, P. R.; Karpfen, A.; Kofranek, M.; Lischka, H. *J. Chem. Phys.* **1990**, 93, 6266.

methylene. When a triple- ζ plus polarization functions (TZP) basis set was used, multireference configuration interaction MRCISD(Q) calculations⁵⁵ based on complete active space CASSCF references provided a ¹A₁-³B₁ energy gap of 10.0 kcal/ mol, which is 1.0 kcal/mol larger than the experimental value of 9.0 \pm 0.09 kcal/mol.^{3d} Application of different types of corrections led to improvement in the calculated singlet-triplet splittings, including relativistic effects, ^{54b} adiabatic corrections, ⁵⁶ or empirical corrections based on the singlet-triplet gap of the hydrogen molecule.⁵⁷

It has recently been demonstrated that the methylene singlet triplet gap can be calculated reliably from single-reference wave functions by using coupled-cluster theory,^{4,58–60} although an earlier theoretical study⁶¹ suggested that within the restricted

open-shell formalism, a two-configuration coupled-cluster wave function was needed to treat singlet methylene on the same footing as for the triplet counterpart. The coupled cluster method is capable of accounting for the bulk of quadruple excitation effects through the disconnected coupled-pair (T_2^2 terms), which are absent in a single and double excitation CI treatment. In addition, when the triple substitutions are accounted for, for example, the CCSD(T) approach including perturbative triple excitations, the derived results are expected to approach the FCI counterparts. In other words, errors encountered in previous calculations were likely to originate from the incompleteness of the one-electron basis functions employed, rather than from the inherent single-reference character of the starting wave function used in the CC method. Results for the :CH₂ energy gap using CCSD(T) with various basis sets have been reported.4a,60 At the CBS limit, the heats of formation (0 K) for methylene in the triplet and singlet states were calculated to be 93.4 and 102.6 kcal/mol, respectively, by the CCSD(T) method (see Tables 1–4 for further details).^{4a} The most recent recommended values for these quantities are 93.18 ± 0.20 and 102.21 ± 0.20 kcal/mol.^{3d} These data lead to a theoretical singlet-triplet separation of 9.2 kcal/mol, which is in good agreement with the experimental value of 9.0 \pm 0.09 kcal/mol (see Table 4).³

Using atomization energies computed at the CCSD(T)/CBS level, we confirm previous results^{4a} and obtain a value of 102.6 kcal/mol for the heat of formation (at 0 K) of singlet methylene (102.7 kcal/mol at 298 K) and 93.4 kcal/mol for $\Delta H_{\rm f}({}^{3}{\rm CH}_{2})$ at 0 K and 93.5 kcal/mol for $\Delta H_{\rm f}({}^{3}{\rm CH}_{2})$ at 298 K. We supplement this result with other thermochemical properties for CH₂ (Table

TABLE 2: Calculated Atomization Energies for Singlet and Triplet CH₂^a

molecule	$CBS(1)^b$	$CBS(2)^c$	$\Delta E_{ m ZPE}$	$\Delta E_{ m CV}{}^d$	$\Delta E_{ m SR}{}^e$	$\Delta E_{\rm SO}^{f}$	$\frac{\Sigma D_0 (0 \text{ K})}{[\text{CBS}(1)]^g}$	$\frac{\Sigma D_0 (0 \text{ K})}{[\text{CBS}(2)]^h}$
$CH_2 ({}^1A_1)$	180.69	180.80	10.24^{i}	0.34	-0.08	-0.085	170.62	170.73
$CH_2 ({}^{3}B_1)$	189.97	189.98	10.65^{j}	0.72	-0.15	-0.085	179.81	179.82
CH_2^-	203.81	203.97	9.45^{k}	0.56	-0.14	-0.085	194.70	194.86
CH_2^+	-49.35	-49.36	10.16^{k}	0.24	-0.10	-0.085	-59.47	-59.60
CH_3^+	81.32	81.39	19.37^{k}	0.50	-0.12	-0.085	62.25	62.40

^{*a*} Results are given in kcal/mol. ^{*b*} Extrapolated by using eq 1 with aVnZ, where n = D, T, and Q. ^{*c*} Extrapolated by using eq 2 with aVQZ and aV5Z; cf. Table S-3 (Supporting Information). ^{*d*} Core/valence corrections were obtained with the cc-pwCVTZ basis sets at the CCSD(T)/aVTZ optimized geometries. ^{*e*} The scalar relativistic correction is based on a CISD/aVTZ calculation. ^{*f*} Reference 49 ^{*g*}) ΣD_0 (0 K) [CBS(1)] was computed with the CBS obtained by eq 1. ^{*h*}) ΣD_0 (0 K) [CBS(2)] was computed with the CBS obtained by eq 2. ^{*i*})The zero point energy was obtained from the average of CCSD(T)/aVTZ and experimental values as reported in Table S-1 (Supporting Information). ^{*j*})The zero point energy was obtained at the CCSD(T)/aVTZ level with a scale factor of 0.983 obtained form CH₂ (¹A₁). ^{*k*})The zero point energy was obtained at the CCSD(T)/aVDZ level with a scale factor of 0.983 obtained form CH₂ (¹A₁).

TABLE 3: CCSD(T) and Experimental Heats of Formation at 0 and 298 K (kcal/mol)

molecule	$\Delta H_{\rm f}(0 {\rm K})$ this work ^{<i>a</i>}	$\Delta H_{\rm f}(0 \ {\rm K})$ other work ^b	$\Delta H_{\rm f}(0 \text{ K})$ experimental	$\Delta H_{\rm f}$ (298 K) this work ^c	$\Delta H_{\rm f}(298 \text{ K})$ experimental
${ m CH}_2(^1{ m A}_1)\ { m CH}_2(^3{ m B}_1)\ { m CH}_2^-\ { m CH}_2^+\ { m CH}_3^+$	102.6 93.4 78.5 332.8 262.5	101.9 92.9	$\begin{array}{c} 102.21 \pm 0.20^{d} \\ 93.18 \pm 0.20^{e} \\ 78.14 \pm 0.20^{f} \\ 332.92 \pm 0.19^{e} \\ 262.73 \pm 0.06^{e} \end{array}$	102.7 93.5 78.6 332.9 261.6	102.31 ± 0.20^{d} 93.31 ± 0.20^{e} 78.27 ± 0.20^{f} 333.04 ± 0.19^{e} 261.83 ± 0.06^{e}

^{*a*} The reported heat of formation was obtained by the average of columns 8 and 9 from Table 2. ^{*b*} Doltsinis, N. L.; Knowles, P. J. *J. Chem. Soc., Faraday Trans.* **1997**, *93*, 2025. ^{*c*} The theoretical values were obtained by the same procedure of ref 52. ^{*d*} Hayden, C. C.: Neumark, D. M.; Shobatake, K.; Sparks, R. K.; Lee, Y. T. *J. Chem. Phys.* **1982**, *76*, 3607 and ref 3d. ^{*e*} Reference 3d. ^{*f*} References 3a and 3d.

TARLE 4.	Thermochemical	Parameters of	of Methylene	Calculated	Using	Different	Quantum	Chemical	Methodsa
IADLE 4.	1 net mochemicai	I al ameters u	n wieunyiene	Calculateu	Using	Different	Quantum	Chemical	Michious

method	$\Delta E_{\rm ST}$ (kcal/mol)	$IE_a(eV)$	EA (eV)	PA (kcal/mol)	HA (kcal/mol)
CCSD(T)/CBS	9.2	10.38	0.65	197.6	109.5
G3	9.5	10.39	0.58	197.5	109.3
exptl.	9.0 ± 0.09^b	$10.3962 \pm 0.0036^{\circ}$	0.6520 ± 0.006^{b}	197.2^{d}	109.0^{e}

^{*a*} All values are at 0 K excepting PA which is at 298 K. ^{*b*} Reference 3a. ^{*c*} Reference 3d. ^{*d*} Reference 3d plus $\Delta H_{\rm f}({\rm H}^+) = 365.69$ kcal/mol at 298 K. ^{*e*} Hydrogen affinity of triplet methylene. $\Delta H_{\rm f}(0 \text{ K})$ of CH₃ is 35.5 ± 0.3 kcal/mol (theoretical, this work), and 35.86 ± 0.07 kcal/mol (experimental, ref 3d). $\Delta H_{\rm f}(0 \text{ K})$ of H is 51.63 kcal/mol.

TABLE 5: Optimized CCSD(T) Bond Lengths (Å) and Bond Angles (°) for HCOH, H₂C=O, CH₃-C-OH, CH₃CH=O and Related Systems

molecule	bas	sis set	r _{HC}	r _{CO}	r _{OH}		∠HCO	∠COH	2	HCOH
cis-HC:OH single	et aV	DZ 1	1.1209	1.3187	0.972	21	106.1	114.1		0.0
trans-HC:OH sin	glet aV	DZ 1	1.1138	1.3195	0.967	7	102.1	107.7		180.0
HC:OH triplet	aV	DZ 1	1.0899	1.3440	0.967	0	123.6	110.4		103.1
HC:OH ⁺	aV	DZ	1.0993	1.2255	0.989	5	124.4	117.3		180.0
molecule	basis set	$r_{\rm HC}$	r _{CO}	r _{OH}		∠HCO	∠HCH	∠CO]	Н	∠HCOH
H ₂ CO singlet	aVDZ	1.1031	1.2115		12	1.7	116.6			180.0
2	expt ^a	1.1005	1.2033		12	1.9	116.2			180.0
H ₂ CO triplet	aVDZ	1.0957	1.3155		11	3.6				134.9
H_2CO^+	aVDZ	1.1143	1.2001		11	9.4	121.2			180.0
H ₂ COH ⁺	aVDZ	1 0878 1 0900	1 2529	0.981	8 11	56 121 5	12112	114 9	9	180.0
	u + 2 2	110070, 110700	, 11202)	00001	0 11	, 12110				10010
molecule	basis set	1	ΉС	r _{CC}	r _{CO}	r _{OH}	∠HC	С	∠CC0	∠COH
CH ₃ C:OH singlet	6-311++G**	1.0995, 1.0	0991	1.5092	1.3255	0.9657	114.6, 107.4	4	107.1	106.9
CH ₃ C:OH triplet	6-311++G**	1.0952, 1.1	1028, 1.1026	1.4970	1.3563	0.9654	109.6, 111.	6, 110.5	123.5	109.1
CH ₃ C:OH ⁺	6-311++G**	1.0972, 1.0	0997	1.4623	1.2426	0.9825	110.6, 107.	4	129.0	114.8
molecule		hasis as		/110/	70		/UCCH		/00	ΉΩ
molecule		Dasis se	et 🛛	ZHCC	.0		ZHUUT		200	.011
CH ₃ C:OH sin	ıglet	6-311++0	я G**		0	1	23.2, -123.2		18).0
CH ₃ C:OH sin CH ₃ C:OH trij	nglet plet	6-311++0 6-311++0	n G** G**	0. 176.	03	1	23.2, -123.2 20.2, 119.4		18 10).0 9.3
CH ₃ C:OH sin CH ₃ C:OH trij CH ₃ C:OH ⁺	nglet plet	6-311++0 6-311++0 6-311++0	cı G** G** G**	0. 176. 0.	0 3 0	1 1 1 1	23.2, -123.2 20.2, 119.4 22.5, -122.5		180 100 180).0 9.3).0
CH ₃ C:OH sin CH ₃ C:OH trij CH ₃ C:OH ⁺	glet plet	6-311++0 6-311++0 6-311++0	G** G** G**	0. 176. 0.	0 3 0	1 1 1	23.2, -123.2 20.2, 119.4 22.5, -122.5		180 109 180).0 9.3).0
CH ₃ C:OH sin CH ₃ C:OH tri CH ₃ C:OH ⁺ molecule ^b	glet plet basis set	6-311++(6-311++(6-311++(r	е G** G** G** НС	0. 176. 0.	0 3 0 <i>r</i> _{CO}	1 1 1 <i>r</i> _{CHx}	23.2, -123.2 20.2, 119.4 22.5, -122.5 <i>г</i> он	∠HC	180 109 180 C	0.0 0.3 0.0 ∠CCO
CH ₃ C:OH sin CH ₃ C:OH tri CH ₃ C:OH ⁺ molecule ^b CH ₃ CHO singlet	glet plet basis set 6-311++G**	6-311++(6-311++(6-311++(<i>r</i> 1.0939, 1.0	с G** G** G** 'HC)986	0. 176. 0. <u>rcc</u> 1.5134	$ \frac{0}{3} \\ 0 \\ \underline{r_{CO}} \\ 1.2143 $	1 1 1 r _{CHx} 1.1129	23.2, -123.2 20.2, 119.4 22.5, -122.5 <i>г</i> _{ОН}	∠HC 110.5, 109.3	180 100 180 C 3	0.0 0.0 0.0 2.3 0.0 ∠CCO 124.4
CH ₃ C:OH sin CH ₃ C:OH tri CH ₃ C:OH ⁺ molecule ^b CH ₃ CHO singlet	basis set 6-311++G** expt ^c	6-311++(6-311++(6-311++(7 1.0939, 1.0 1.091, 1.08	а G** G** G** 9986 35	0. 176. 0. <u>rcc</u> 1.5134 1.504	0 3 0 <u>rco</u> 1.2143 1.213	1 1 1 1.1129 1.106	2лесни 23.2, -123.2 20.2, 119.4 22.5, -122.5 <i>г</i> _{ОН}	∠HC 110.5, 109 110.6, 110	180 100 180 C 3 3	$\frac{2000}{2000}$
CH ₃ C:OH sin CH ₃ C:OH tri CH ₃ C:OH ⁺ molecule ^b CH ₃ CHO singlet CH ₃ CHO triplet	basis set $6-311++G^{**}$ $6-311++G^{**}$	6-311++(6-311++(6-311++(7 1.0939, 1.0 1.091, 1.08 1.0942, 1.1	а G** G** G** 9986 35 0003, 1,0952	0. 176. 0. 1.5134 1.504 1.5173	0 3 0 <i>r</i> _{CO} 1.2143 1.213 1.3314	1 1 1 1.1129 1.106 1.0978	2лесн 23.2, -123.2 20.2, 119.4 22.5, -122.5 <i>г</i> _{OH}	∠HC 110.5, 109 110.6, 110 108.8, 111.0		0.0 9.3 0.0 ∠CCO 124.4 124.0 114.5
CH ₃ C:OH sin CH ₃ C:OH tri CH ₃ C:OH ⁺ molecule ^b CH ₃ CHO singlet CH ₃ CHO triplet CH ₃ CHO ⁺	basis set 6-311++G** 6-311++G** 6-311++G** 6-311++G**	6-311++(6-311++(6-311++(6-311++(1.0939, 1.0 1.091, 1.08 1.0942, 1.1 1.0904, 1.0	а G** G** G** G** 9986 35 1003, 1.0952 984	0. 176. 0. 1.5134 1.504 1.5173 1.5140	0 3 0 <i>r</i> _{CO} 1.2143 1.213 1.3314 1.2081	1 1 1 1.1129 1.106 1.0978 1.1134	23.2, -123.2 20.2, 119.4 22.5, -122.5 <i>г</i> _{ОН}	∠HC 110.5, 109 110.6, 110 108.8, 111.0 111.2, 105.3	C 3 6, 110.4	$ \frac{0.011}{0.0} $ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
CH ₃ C:OH sin CH ₃ C:OH trij CH ₃ C:OH ⁺ molecule ^b CH ₃ CHO singlet CH ₃ CHO triplet CH ₃ CHO ⁺ CH ₃ CHO ⁺ CH ₂ CHOH ⁺	basis set 6-311++G** expt ^c 6-311++G** 6-311++G** 6-311++G**	6-311++(6-311++(6-311++(6-311++(1.0939, 1.0 1.091, 1.0 1.0904, 1.0 1.0904, 1.0	а G** G** G** 9986 35 1003, 1.0952 9984 016	0. 176. 0. 1.5134 1.504 1.5173 1.5140 1.4636	0 3 0 1.2143 1.213 1.3314 1.2081 1.2673	1 1 1 1.1129 1.106 1.0978 1.1134 1.0965	2лести 23.2, -123.2 20.2, 119.4 22.5, -122.5 <i>г</i> _{ОН}	∠HC 110.5, 109 110.6, 110 108.8, 111. 111.2, 105	C 3 3 6, 110.4 8	$ \frac{2000}{2000} \frac{2000}{2000}$
CH ₃ C:OH sin CH ₃ C:OH trij CH ₃ C:OH ⁺ molecule ^b CH ₃ CHO singlet CH ₃ CHO triplet CH ₃ CHO ⁺ CH ₃ CHOH ⁺	basis set 6-311++G** expt ^c 6-311++G** 6-311++G** 6-311++G**	6-311++(6-311++(6-311++(6-311++(1.0939, 1.0 1.091, 1.08 1.0942, 1.1 1.0904, 1.0 1.0913, 1.1	а G** G** G** 9986 35 1003, 1.0952 9984 1016	0. 176. 0. 1.5134 1.504 1.5173 1.5140 1.4636	0 3 0 1.2143 1.213 1.314 1.2081 1.2673	1 1 1 1.1129 1.106 1.0978 1.1134 1.0965	2лести 23.2, -123.2 20.2, 119.4 22.5, -122.5 <i>г</i> _{ОН} 0.9766	∠HC 110.5, 109 110.6, 110 108.8, 111 111.2, 105.3 112.2, 107	18 109 18 0 3 6, 110.4 8	$\begin{array}{c} 0.0\\ 0.0\\ 0.3\\ 0.0\\ \hline \\ \hline \\ 2CCO\\ 124.4\\ 124.0\\ 114.5\\ 123.1\\ 119.9\\ \hline \end{array}$
molecule CH ₃ C:OH sin CH ₃ C:OH ⁺ molecule ^b CH ₃ CHO singlet CH ₃ CHO triplet CH ₃ CHO ⁺ CH ₃ CHOH ⁺	basis set 6-311++G** 6-311++G** 6-311++G** 6-311++G** 6-311++G** 6-311++G**	6-311++0 6-311++0 6-311++0 1.0939, 1.0 1.091, 1.08 1.0942, 1.1 1.0904, 1.0 1.0913, 1.1 ∠CCH _x	д G** G** G** Э986 35 1003, 1.0952 9984 1016 ∠HOC	2HCC 0. 176. 0. 1.5134 1.504 1.5173 1.5140 1.4636 ∠HCCO	$ \begin{array}{r} 0 \\ 0 \\ 3 \\ 0 \\ \hline 1.2143 \\ 1.213 \\ 1.3314 \\ 1.2081 \\ 1.2673 \\ \angle HC \end{array} $	1 1 1 1.1129 1.1106 1.0978 1.1134 1.0965	2лести 23.2, -123.2 20.2, 119.4 22.5, -122.5 <i>г</i> _{ОН} 0.9766 ∠H _x CCO	∠HC 110.5, 109.7 110.6, 110.7 108.8, 111.0 111.2, 105.3 112.2, 107.0 ∠H _x COC	2000 180 100 180 3 3 6, 110.4 8 6 2	$ \begin{array}{c} 0.0 \\ 0.3 \\ 0.0 \\ \hline \end{tabular} \\ \end{tabular} \end{tabular} \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} tabu$
CH ₃ C:OH sin CH ₃ C:OH trij CH ₃ C:OH ⁺ molecule ^b CH ₃ CHO singlet CH ₃ CHO triplet CH ₃ CHO ⁺	$basis set$ $6-311++G^{**}$	6-311++0 6-311++0 6-311++0 1.0939, 1.0 1.091, 1.08 1.0942, 1.1 1.0904, 1.0 1.0913, 1.1 ∠CCH _x * 115.3	а G** G** G** 7нс 19986 35 1003, 1.0952 1984 1016 ∠HOC	0. 176. 0. 1.5134 1.504 1.5173 1.5140 1.4636 ∠HCCO 0.0	$ \begin{array}{r} r_{CO} \\ \hline r_{CO} \\ 1.2143 \\ 1.213 \\ 1.3314 \\ 1.2081 \\ 1.2673 \\ \angle HC \\ 121.4 \\ \hline 121.4 \\ \hline 121.4 \\ \hline 121.4 \\ \hline r_{CO} \\ 121.4 \\ \hline r_{CO} \\ r_{CO} \\$	1 1 1 1.1129 1.106 1.0978 1.1134 1.0965 CCH -121.4	$2.11CC11$ $23.2, -123.2$ $20.2, 119.4$ $22.5, -122.5$ r_{OH} 0.9766 $\angle H_{3}CCO$ 180.0	∠HC 110.5, 109 110.6, 110 108.8, 111. 111.2, 105.3 112.2, 107.0 ∠H ₄ COC	2000 188 100 189 6 6 2	$ \begin{array}{c} 0.0 \\ 0.3 \\ 0.0 \\ \hline \end{tabular} \\ \end{tabular} \end{tabular} \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} $
CH ₃ C:OH sin CH ₃ C:OH trij CH ₃ C:OH ⁺ molecule ^b CH ₃ CHO singlet CH ₃ CHO triplet CH ₃ CHOH ⁺ molecule ^b CH ₃ CHO triplet CH ₃ CHOH ⁺ CH ₃ CHOH ⁺ CH ₃ CHOH ⁺	$basis set$ $6-311++G^{**}$ $expt^c$ $6-311++G^{**}$ $6-311++G^{**}$ $6-311++G^{**}$ $6-311++G^{**}$ $basis set$ $6-311++G^{**}$ $expt^b$	6-311++0 6-311++0 6-311++0 1.0939, 1.0 1.091, 1.08 1.0942, 1.1 1.0904, 1.0 1.0913, 1.1 ∠CCH _x * 115.3 114.9	а G** G** G** P986 35 1003, 1.0952 9984 1016 ∠HOC	$\begin{array}{c} 2 \text{HCC} \\ 0. \\ 1.76. \\ 0. \\ \hline 1.5134 \\ 1.504 \\ 1.5173 \\ 1.5140 \\ 1.4636 \\ \hline 2 \text{HCCO} \\ 0.0 \\ 0.0 \\ \end{array}$	$ \begin{array}{r} r_{CO} \\ \hline r_{CO} \\ \hline 1.2143 \\ 1.213 \\ 1.3314 \\ 1.2081 \\ 1.2673 \\ \angle HC \\ \hline 121.4, \cdot \end{array} $	1 1 1 1.1129 1.106 1.0978 1.1134 1.0965 CCH -121.4	$2.11CC11$ $23.2, -123.2$ $20.2, 119.4$ $22.5, -122.5$ r_{OH} 0.9766 $\angle H_{4}CCO$ 180.0	∠HC 110.5, 109 110.6, 110 108.8, 111. 111.2, 105.3 112.2, 107.0 ∠H _x COC 180.0	2000 188 100 189 6, 110.4 8 6 10.4 8 6	$ \frac{2000}{2000} \frac{2000}{124.4} \frac{124.4}{124.0} \frac{114.5}{123.1} \frac{119.9}{119.9} $
CH ₃ C:OH sin CH ₃ C:OH trij CH ₃ C:OH ⁺ molecule ^b CH ₃ CHO singlet CH ₃ CHO triplet CH ₃ CHOH ⁺ molecule ^b CH ₃ CHO triplet CH ₃ CHOH ⁺ CH ₃ CHO triplet CH ₃ CHO triplet CH ₃ CHO triplet CH ₃ CHO triplet CH ₃ CHO singlet CH ₃ CHO triplet CH ₃ CHO triplet	glet basis set $6-311++G^{**}$ $expt^c$ $6-311++G^{**}$ $6-311++G^{**}$ $6-311++G^{**}$ $6-311++G^{**}$ $6-311++G^{**}$ $6-311++G^{**}$ $6-311++G^{**}$ $6-311++G^{**}$ $6-311++G^{**}$	6-311++(6-311++(6-311++(6-311++(1.0939, 1.0 1.091, 1.0 1.0904, 1.0 1.0904, 1.0 1.0913, 1.1 ∠CCH _x * 115.3 114.9 * 118.3	а G** G** G** P986 35 1003, 1.0952 9984 1016 ∠HOC	$\begin{array}{c} 2 \text{HCC} \\ 0. \\ 1.76. \\ 0. \\ \hline 1.5134 \\ 1.504 \\ 1.5173 \\ 1.5140 \\ 1.4636 \\ \hline 2 \text{HCCO} \\ 0.0 \\ 0.0 \\ 175.0 \\ \end{array}$	$ \begin{array}{r} r_{CO} \\ \hline r_{CO} \\ \hline 1.2143 \\ 1.213 \\ 1.213 \\ 1.3314 \\ 1.2081 \\ 1.2673 \\ \hline \angle HC \\ 121.4, \cdot \\ 120.3, \cdot \\ \end{array} $	1 1 1 1 1.1129 1.106 1.0978 1.1134 1.0965 CCH -121.4 -119.1	$2.11CC11$ $23.2, -123.2$ $20.2, 119.4$ $22.5, -122.5$ r_{OH} 0.9766 $2H_{x}CCO$ 180.0 134.3	∠HC 110.5, 109.3 110.6, 110.3 108.8, 111.4 111.2, 105.3 112.2, 107.4 ∠H ₄ COC 180.0	2000 180 100 180 3 3 6 110.4 8 6 2	$ \frac{2000}{2000} \frac{2000}{124.4} \frac{124.4}{124.0} \frac{114.5}{123.1} \frac{119.9}{0000} $
CH ₃ C:OH sin CH ₃ C:OH trij CH ₃ C:OH+ molecule ^b CH ₃ CHO singlet CH ₃ CHO triplet CH ₃ CHOH+ molecule ^b CH ₃ CHO triplet CH ₃ CHOH+ CH ₃ CHO triplet CH ₃ CHO singlet CH ₃ CHO singlet CH ₃ CHO triplet CH ₃ CHO singlet CH ₃ CHO triplet CH ₃ CHO ⁺	glet basis set $6-311++G^{**}$ $expt^c$ $6-311++G^{**}$ $6-311++G^{**}$ $6-311++G^{**}$ basis set $6-311++G^{**}$ $6-311++G^{**}$ $6-311++G^{**}$ $6-311++G^{**}$ $6-311++G^{**}$ $6-311++G^{**}$	6-311++(6-311++(6-311++(6-311++(1.0939, 1.0 1.091, 1.08 1.0942, 1.1 1.0904, 1.0 1.0913, 1.1 ∠CCH _x * 115.3 114.9 * 118.3 * 121.5	а G** G** G** 9986 35 1003, 1.0952 9984 1016 ∠HOC	$\begin{array}{c} 2 \text{HCC} \\ 0. \\ 1.76. \\ 0. \\ \hline 1.5134 \\ 1.504 \\ 1.5173 \\ 1.5140 \\ 1.4636 \\ \hline 2 \text{HCCO} \\ 0.0 \\ 0.0 \\ 175.0 \\ 0.0 \\ 0.0 \\ \end{array}$	$ \begin{array}{r} r_{CO} \\ \hline r_{CO} \\ 1.2143 \\ 1.213 \\ 1.213 \\ 1.3314 \\ 1.2081 \\ 1.2673 \\ \underline{\checkmark}HC \\ 121.4, \cdot \\ 120.3, \cdot \\ 122.2, \cdot \\ 122.2, \cdot \\ \end{array} $	1 1 1 1 1.1129 1.106 1.0978 1.1134 1.0965 CCH -121.4 -119.1 -122.2	2110011 $23.2, -123.2$ $20.2, 119.4$ $22.5, -122.5$ r_{OH} 0.9766 $\angle H_{4}CCO$ 180.0 134.3 180.0	∠HC 110.5, 109 110.6, 110 108.8, 111 111.2, 105.3 112.2, 107 ∠H ₄ COC 180.0	2000 180 100 180 3 66, 110.4 8 6 2 2	$ \frac{2000}{2000} \frac{2000}{124.4} \frac{124.4}{124.0} \frac{114.5}{123.1} \frac{119.9}{0000} $
CH ₃ C:OH sin CH ₃ C:OH trij CH ₃ C:OH ⁺ molecule ^b CH ₃ CHO singlet CH ₃ CHO triplet CH ₃ CHOH ⁺ CH ₃ CHOH ⁺ CH ₃ CHO singlet CH ₃ CHO singlet CH ₃ CHO triplet CH ₃ CHO triplet CH ₃ CHO ⁺ CH ₃ CHO ⁺	basis set $6-311++G^{**}$ $expt^c$ $6-311++G^{**}$	6-311++(6-311++(6-311++(6-311++(1.0939, 1.0 1.091, 1.08 1.0942, 1.1 1.0904, 1.0 1.0913, 1.1 ∠CCH _x * 115.3 114.9 * 118.3 * 121.5	a G** G** G** 9986 35 1003, 1.0952 9984 1016 ∠HOC	$\begin{array}{c} 2 \text{HCC} \\ 0. \\ 1.76. \\ 0. \\ \hline 1.5134 \\ 1.504 \\ 1.5173 \\ 1.5140 \\ 1.4636 \\ \hline 2 \text{HCCO} \\ 0.0 \\ 0.0 \\ 175.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ \end{array}$	$ \begin{array}{r} r_{CO} \\ \hline r_{CO} \\ 1.2143 \\ 1.213 \\ 1.3314 \\ 1.2081 \\ 1.2673 \\ \hline \underline{\ \ } \\ \underline{\ \ } \\ 121.4, \cdot \\ 120.3, \cdot \\ 122.2, \cdot \\ 123.2, \cdot \\ \end{array} $	1 1 1 1 1 1 1 1 1 1 1 1 1 1	$2.11CC11$ $23.2, -123.2$ $20.2, 119.4$ $22.5, -122.5$ r_{OH} 0.9766 $\angle H_{4}CCO$ 180.0 134.3 180.0 180.0	∠HC 110.5, 109 110.6, 110 108.8, 111 111.2, 105.3 112.2, 107 ∠H _x COC 180.0	2000 18% 100 18% 3 6 110.4 8 6 2 18% 2 110.4	$ \begin{array}{c} 0.0 \\ 0.3 \\ 0.0 \\ \hline 2CCO \\ 124.4 \\ 124.0 \\ 114.5 \\ 123.1 \\ 119.9 \\ \hline 0CC \\ \hline 30.0 \\ 30.0 \\ \hline $

^{*a*} Duncan, J. L. *Mol. Phys.* **1974**, 28, 1177. ^{*b*} H_x is the hydrogen from –CHO. ^{*c*} Kilb, R. W.; Lin, C. C.; Wilson, E. B., Jr. *J. Chem. Phys.* **1957**, 26, 1695. Harmony, M. D.; Laurie, V. W.; Kuczkowski, R. L.; Schwendeman, R. H.; Ramsay, D. A.; Lovas, F. J.; Lafferty, W. J.; Maki, A. G. *J. Phys. Chem. Ref. Data* **1979**, 8, 61.

4) including its ionization energy, electron affinity, proton affinity and hydrogen affinity as determined for the triplet ground state of CH₂. The calculated electron affinity of the triplet methylene $({}^{3}B_{1})$, derived from energies of the corresponding CH_2^- anion (²B₁), converges to a value of $EA(^3CH_2) = 0.65$ eV, in excellent agreement with the experimental photodetachment value of 0.6520 ± 0.006 eV.^{3a} The adiabatic ionization energy, giving rise to the $CH_2^+(^2A_1)$ cation, is $IE_a(^3CH_2) =$ 10.38 eV, in very good agreement with the experimental value of 10.3962 ± 0.0036 eV.^{3d} Similarly the calculated proton affinity $PA(^{3}CH_{2}) = 197.6$ kcal/mol and hydrogen affinity (C-H bond energy in CH₃) $HA(^{3}CH_{2}) = 109.5$ kcal/mol are both very close to the experimental values of 197.2 and 109.0 kcal/mol, respectively.3d The agreement with experiment for all of the values is very good. On the basis of these values and our best estimates for the errors in the calculations, we assign a maximum error limit of ± 1 kcal/mol for the thermodynamic values reported below.

Hydroxymethylene. The results for hydroxymethylene (HC:OH) are given in Tables 5–8. For comparison, values determined by the G3 method⁶² are also given. The parameters include the energy difference ΔE_1 between HC:OH and its more stable isomer, formaldehyde (H₂CO), in the lowest-lying singlet, triplet and ionized states, the singlet-triplet energy separation ΔE_{ST} , the adiabatic ionization energy IE_a, and the proton affinity PA. The latter three properties were evaluated for both isomers.

Unless otherwise noted, the relative energies quoted hereafter refer to the CCSD(T)/CBS results.

The experimental value for the standard heat of formation of formaldehyde is $\Delta H_{\rm f}({\rm H_2CO}) = -26.0 \text{ kcal/mol},^{21}$ in excellent agreement with our value, -26.0 kcal/mol. The predicted heat of formation for trans-HC:OH at 298 K is 26.1 kcal/mol. The cis conformer is 4.4 kcal/mol (see Table 7) higher in energy. The energy of *trans*-¹HC:OH relative to H₂CO (isomerization energy ΔE_1) converges to a value of 52.1 kcal/mol. The G3 counterpart is marginally larger (52.2 kcal/mol, Table 8). Previous full fourth-order perturbation MP4SDTQ/6-31G(d,p) calculations²³ on the (CH₂O) potential energy surface provided a larger gap of 55 kcal/mol (see also ref 63). A more recent paper²⁴ reported values of 57.6 and 46.4 kcal/mol obtained from CASSCF(10,10) and MRCI(8,8)//CASSCF(8,8) calculations, respectively, using a cc-pVTZ basis set. Our best estimate of $\Delta E_1 = 52.1$ kcal/mol is slightly smaller than the original 1982 experimental value of $54.2 \pm 2 \text{ kcal/mol},^{20}$ but markedly smaller than the recently revised value of $60 \pm 2 \text{ kcal/mol},^{22}$ In view of the expected accuracy of the method that we are using, both experimental energy gaps are too large.

The carbene becomes strongly stabilized relative to formaldehyde following electronic excitation and ionization. Indeed, the ΔE_1 is substantially reduced amounting to only 5.0 and 6.1 kcal/mol in the triplet and cation states, respectively (the corresponding G3 values are 4.5 and 6.2 kcal/mol). The potential

TABLE 6: Calculated Atomization Energies^a

$CBS(1)^b$	$\Delta E_{ m ZPE}$	$\Delta E_{ m CV}{}^c$	$\Delta E_{ m SR}{}^d$	$\Delta E_{ m SO}{}^{e}$	$\Sigma D_0(0 \text{ K})$
316.77	15.91 ^f	0.70	-0.42	-0.308	300.83
321.57	16.37 ^f	0.75	-0.43	-0.308	305.21
294.86	15.11^{f}	1.03	-0.52	-0.308	279.95
115.82	16.04 ^f	0.86	-0.55	-0.308	99.78
373.34	16.37^{g}	1.12	-0.43	-0.308	357.35
298.75	14.24^{h}	1.10	-0.38	-0.308	284.91
120.28	14.71^{h}	0.96	-0.29	-0.308	105.93
237.22	24.86^{h}	1.04	-0.47	-0.308	212.63
624.62	34.03 ⁱ	1.88	-0.63	-0.393	591.44
593.21	33.25^{i}	2.08	-0.74	-0.393	560.92
435.66	33.78^{i}	2.01	-0.66	-0.393	402.85
675.11	34.23^{g}	2.21	-0.65	-0.393	642.05
595.27	32.95^{i}	2.12	-0.60	-0.393	563.45
437.31	33.10^{i}	2.03	-0.51	-0.393	405.34
552.70	42.44^{i}	2.19	-0.68	-0.393	511.38
	CBS(1) ^b 316.77 321.57 294.86 115.82 373.34 298.75 120.28 237.22 624.62 593.21 435.66 675.11 595.27 437.31 552.70	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^{*a*} Results are given in kcal/mol. ^{*b*} Extrapolated by using eq 1 with aV*nZ*, where n = D, *T* and Q. Total energies are given Table S-4 (Supporting Information). ^{*c*} Core/valence corrections were obtained with the cc-pwCVTZ basis sets at the CCSD(T)/aVTZ optimized geometries for systems with 1 carbon atom, and CCSD(T)/6-311++G(d, p), for systems with 2 carbon atoms. ^{*d*} The scalar relativistic correction is based on a CISD/aVTZ calculation. ^{*e*} Values obtained from ref 49. ^{*f*} A scale factor of 0.985, obtained from methanol, was applied. ^{*g*} The zero point energy was obtained from the average of theoretical and experimental values as reported in Table S-2 (Supporting Information). ^{*h*} A scale factor of 0.976, obtained from H₂CO, was applied. ^{*i*} A scale factor of 0.981, obtained from CH₃CHO, was applied.

TABLE 7:	CCSD(T)	Heats	of	Formation	at	0	and	298	K
(kcal/mol)									

molecule	$\Delta H_{\rm f}(0 \text{ K})$ this work	$\Delta H_{\rm f}$ (298 K) this work
cis-HC:OH singlet	31.4	30.5
trans-HC:OH singlet	27.0	26.1
HC:OH triplet	52.3	51.6
HC:OH ⁺	232.4	231.6
H ₂ CO singlet ^a	-25.1	-26.0
H ₂ CO triplet	47.3	46.5
H_2CO^+	226.3	225.4
H_2COH^+	171.2	169.3
CH ₃ C:OH singlet ^b	14.0	11.2
CH ₃ C:OH triplet	44.5	42.3
CH ₃ C:OH ⁺	202.6	200.2
CH ₃ CHO singlet ^c	-36.6	-39.1
CH ₃ CHO triplet	42.0	39.6
CH_3CHO^+	200.1	197.7
CH_3CHOH^+	145.7	142.2

^{*a*} The experimental values are -25.06 at 0 K, -25.95 at 298 K; see ref 21. ^{*b*} The experimental value is 16 ± 4 at 298 K; see ref 22. ^{*c*} The experimental values are -38.29 at 0 K, -40.80 at 298 K; see ref 21.

energy surface of the ionized system has been explored in detail, and the HC:OH⁺ cation has been generated in mass spectrometry experiments and features a nonergodic behavior in dissociative processes.⁶⁴

We can use the following reactions to estimate how the OH group stabilizes the carbene moiety.

$$\operatorname{HC:OH}({}^{1}\mathrm{A}') + \operatorname{CH}_{4} \rightarrow \operatorname{CH}_{3}\mathrm{OH} + :\operatorname{CH}_{2}({}^{3}\mathrm{B}_{1}) \qquad (3)$$

$$\text{HC:OH} (^{1}\text{A}') + \text{CH}_{4} \rightarrow \text{CH}_{3}\text{OH} + :\text{CH}_{2}(^{1}\text{A}_{1}) \qquad (4)$$

$$HCO:H(^{3}A'') + CH_{4} \rightarrow CH_{3}OH + :CH_{2}(^{3}B_{1})$$
(5)

The energy of reaction 3 is $\Delta H_{rxn}(298 \text{ K}) = 39.9 \text{ kcal/mol}$, while it is $\Delta H_{rxn}(298 \text{ K}) = 49.1 \text{ kcal/mol}$ for reaction 4. The energy of reaction 5 is only 14.4 kcal/mol. We used the following experimental heats of formation at 298 K: $\Delta H_f(CH_4) = -17.9 \text{ kcal/mol}$ and $\Delta H_f(CH_3OH) = -45.44 \text{ kcal/mol}.^{21}$ The positive heat of the reactions 3 and 4 indicates a substantial stabilization of the singlet carbene HC:OH by the OH group. In contrast, the stabilization of the triplet carbene (reaction 5) by substitution of the H for OH is much smaller. The singlet-triplet splitting in formaldehyde is wellestablished from experiment.⁶⁵ The CCSD(T), CBS-estimate, result is 72.4 (CBS) kcal/mol, in good agreement with the value of 72.0 kcal/mol (3.12 eV) from electronic spectroscopy⁶⁵ and a previous theoretical MRDCI result of 74.2 kcal/mol (3.22 eV).⁶⁶ The singlet-triplet energy separation in HC:OH is 25.3 \pm 0.5 kcal/mol at the CBS limit; as far as we are aware, there is no experimental report on this quantity yet. The good agreement for both formaldehyde and methylene suggests that we are reliably predicting the gap in the isomeric carbene. The hydroxyl stabilizes the singlet over the triplet most likely through π -electron delocalization, by about 34 kcal/mol as compared to CH₂. It has been previously discussed that π -donor substituents stabilize the singlet carbene more than the triplet counterpart.¹⁷

The IEs and PAs have also been calculated. The CCSD(T)/ CBS values for PA(CH₂O) of 170.4 kcal/mol and IE_a(CH₂O) of 10.90 eV are in good agreement with the experimental values of 170.4 kcal/mol and 10.88 \pm 0.001 eV, respectively.²¹ For the carbene, HC:OH, the PA is 222.5 \pm 0.5 kcal/mol and the IE_a(HCOH) is 8.91 \pm 0.03 eV at the CBS limit. Protonation of both isomers ends up in the same protonated form H₂COH⁺, which corresponds to O-protonation of formaldehyde and to C-protonation of hydroxycarbene. As in the 1982 MS experiment,²⁰ evaluation of these PAs allows the energy difference between the two neutral isomeric forms to be determined. In the NIST Chemistry webbook,²¹ a value for PA(HCOH) = 230.9kcal/mol has been tabulated, which is 10 kcal/mol higher than our result. This arises from the revised energy difference ΔE_1 = 60.5 kcal/mol from the 1998 rescaling of the PAs. Clearly this value for the PA is incorrect as we have shown this energy difference to be incorrect. The carbene IE is about 2 eV smaller than that in formaldehyde as expected as it is far easier to remove the nonbonding electrons. The HOMO of HC:OH is an in-plane (a') orbital with a larger component on C as expected from a simple molecular orbital model of a carbene based on the electronic structure of CH₂.

1-Hydroxyethylidene. Tables 5–7 and 9 summarize the calculated and available experimental values for the thermochemical parameters of the methyl homologue. Here we focus on the energy difference ΔE_2 between the carbene and its lowerenergy isomer acetaldehyde, and the ΔE_{ST} splitting in each isomer. The heat of formation for acetaldehyde, CH₃CHO, at

TABLE 8: Calculated Thermochemical Parameters of Hydroxymethylene (HC:OH) Calculated at Different Levels of Theory^a

	ΔE_1 (kcal/mol)		$\Delta E_{\rm ST}$ (kc	$\Delta E_{\rm ST}$ (kcal/mol)		$E_a (eV)$	PA (kcal/mol)		
method	singlet	triplet	ionized	HC:OH	CH ₂ O	HC:OH	CH ₂ O	HC:OH	CH ₂ O
CCSD(T)/CBS ^b G3 exptl	52.1 52.2 54.2 $\pm 2^{c}$	5.0 4.5	6.1 6.2	25.3 25.3	72.4 73.0 72.0 ^e	8.91 8.92	$\begin{array}{c} 10.90 \\ 10.92 \\ 10.88 \pm 0.01^{f} \end{array}$	222.5 222.6 230.9 ^f	170.4 170.3 170.4 ^f

^{*a*} All values are at 0 K excepting PA which is at 298 K. ^{*b*} Results based on $\Delta H_{\rm f}$ values (Table 7). ^{*c*} Experimental value taken from ref 20. ^{*d*} Reference 22. ^{*e*} Reference 65. ^{*f*} Reference 21.

 TABLE 9: Calculated Thermochemical Parameters of 1-Hydroxyethylidene (CH₃C:OH) Calculated at Different Levels of Theory^a

	$\Delta E_2(kcal/mol)$		$\Delta E_{\rm ST}$ (kcal/mol)		-	IE _a (eV)	PA (kcal/mol)		
method	singlet	triplet	ionized	CH ₃ C:OH	CH ₃ CHO	CH ₃ C:OH	CH ₃ CHO	CH ₃ C:OH	CH ₃ CHO
CCSD(T)/CBS ^b G3 exptl	$50.6 \\ 50.9 \\ 57 \pm 4^c$	2.5 2.8	2.5 3.0	$30.5 \\ 30.4 \\ \sim 28^c$	78.6 78.5 77.8 ^d	8.18 8.20	$10.2610.2710.229 \pm 0.0007^{e}$	234.7 235.4	184.4 184.4 183.7 ^e

^{*a*} All values are at 0 K excepting PA which is at 298 K. ^{*b*} Results based on $\Delta H_{\rm f}$ values (Table 7). ^{*c*} Reference 22. ^{*d*} Reference 69. ^{*e*} Reference 21.

298 K is predicted to be -39.1 kcal/mol. The most recently reported experimental value is -40.8 ± 0.35 kcal/mol,⁶⁷ clearly different from our value. An even larger calculation using the same approach^{37a} gives a total dissociation energy of 642.6 kcal/ mol which converts to $\Delta H_f(CH_3CHO) = -39.6$ kcal/mol. Our value and the higher level one are both in excellent agreement with the older value⁶⁸ of -39.7 ± 0.1 kcal/mol. This is also the value recommended in ref 69. As a further check on our values we can evaluate the energy of the isodesmic reaction 6 as well as reaction 7. The enthalpy of reaction for (6) and (7)

$$C_2H_6 + H_2CO \rightarrow CH_3CHO + CH_4$$
 (6)

$$CH_4 + H_2CO \rightarrow CH_3CHO + H_2 \tag{7}$$

are $\Delta H_{rxn}(298 \text{ K}) = -10.6 \text{ kcal/mol}$ for reaction 6, and $\Delta H_{rxn}(298 \text{ K}) = 4.7 \text{ kcal/mol}$ for reaction 7. Using the experimental heats of formation at 298 K for C₂H₆, CH₄ and H₂CO ($\Delta H_{f^-}(C_2H_6) = -20.0 \text{ kcal/mol}$, $\Delta H_{f}(CH_4) = -17.9 \text{ kcal/mol}$, $\Delta H_{f^-}(H_2CO) = -26.0 \text{ kcal/mol}$,²¹ we calculate $\Delta H_{f}(CH_3CHO)$ to be -38.7 kcal/mol from reaction 6 and -39.2 kcal/mol from reaction 7. Our results show that the earlier value for the heat of formation of CH₃CHO from gas-phase hydrogenation is more reliable than the more recent experimental determination from the enthalpies of reduction with lithium triethylborohydride in triglyme. The heat of formation for CH₃C:OH, at 298 K is predicted to be 11.2 ± 1 kcal/mol.

The singlet-triplet energy splittings are calculated to be 30.5 and 78.6 kcal/mol in CH₃C:OH and CH₃CHO, respectively. The splitting for acetaldehyde is in very good agreement with the spectroscopically derived value of 77.8 kcal/mol (3.378 eV or 27240 cm⁻¹).⁷⁰ The splitting for the isomeric carbene of $\Delta E_{\rm ST}$ (CH₃COH) = 30.5 ± 1 kcal/mol can be compared with the recent experimental result of ~28 kcal/mol tabulated from the BDE(C-H)'s of ethanol.²²

For acetaldehyde, the calculated adiabatic ionization energy IE_a(CH₃CHO) is 10.26 eV and the proton affinity PA(CH₃CHO) is 184.4 kcal/mol in excellent agreement with the experimental values of 10.229 \pm 0.0007 eV and 183.7 kcal/mol.²¹ The relevant parameters for the carbene are IE_a(CH₃COH) = 8.18 \pm 0.02 eV and proton affinity PA(CH₃COH) = 234.7 \pm 1 kcal/mol. Again, the energy difference ΔE_2 between the two isomeric forms is substantially reduced, amounting to only 2.5 kcal/mol, in both the ionized and triplet states.

The results in Table 9 show a CCSD(T)/CBS value for ΔE_2 of 50.6 kcal/mol. The G3 value of 50.9 kcal/mol is close to our CBS value. A value of similar magnitude, 50–51 kcal/mol, has been obtained from density functional theory using the B3LYP functional, irrespective of the basis set used. The value of $\Delta E_2 = 50.6 \pm 1$ kcal/mol is 6.4 kcal/mol smaller than the recent experimental estimate of 57 and does not lies within the uncertainty of ± 4 kcal/mol.²²

Comparing the HCOH/CH₂O pair to the methyl CH₃COH/ CH₃CHO pair shows that the isomerization energy is slightly reduced by 1.5 kcal/mol (from 52.1 to 50.6 kcal/mol), lowering the energy of the carbene with respect to its more stable isomer. This can, in part, be attributed to the hyperconjugative effect of the methyl group whose interaction with the carbenoid 2plobe is stabilizing.

It is interesting to investigate the effect of methyl substitution on the properties of the analogous systems: (1) *heat of formation*, $\Delta H_{\rm f}$ (kcal/mol), HC:OH/CH₃C:OH, -14.9; H₂CO/ CH₃CHO, -13.1; (2) *ionization energy*, $\Delta IE_{\rm a}$ (eV), HC:OH/ CH₃C:OH, -0.73; H₂CO/CH₃CHO, -0.64; and (3) *singlettriplet splitting* $\Delta E_{\rm ST}$ (kcal/mol), HC:OH/CH₃COH, 5.2; H₂CO/ CH₃CHO, 6.2. These show that, within 1–2 kcal/mol, the methyl group exerts a similar effect in both carbenes and aldehydes.

Conclusions

Various thermochemical parameters of both hydroxymethylene and 1-hydroxyethylidene have been predicted by using coupled-cluster CCSD(T) theory extrapolated to the CBS limit. Where comparison of calculated results with experimental data can be made, in particular for those of methylene, formaldehyde, and acetaldehyde, there is a good agreement attaining an average deviation of <1.0 kcal/mol in most of the cases. We recommend our values for the heats of formation of the carbenes and the thermodynamic quantities associated with them including the energy difference between them and the more stable aldehyde isomers as being the best available for these species.

Acknowledgment. Funding was provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, under the Hydrogen Storage Grand Challenge, Solicitation No. DE-PS36-03GO93013. This work was done as

part of the Chemical Hydrogen Storage Center. D.A.D. is indebted to the Robert Ramsay Endowment of the University of Alabama.

Supporting Information Available: Tables of calculated and experimental vibrational frequencies and total CCSD(T) energies (E_h) as a function of basis set and extrapolated to the complete basis set limit. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

 Bertrand, G. Carbene Chemistry; Marcel Dekker: New York, 2002.
 Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1988, 113, 6361.

(3) (a) Leopold, D. G.; Murray, K. K.; Miller, A. E. S.; Lineberger,
W. C. J. Chem. Phys. 1985, 83, 4849. (b) Bunker, P. R.; Sears, T. J. J.
Chem. Phys. 1985, 83, 4866. (c) Khan, M. I.; Goodman, J. L. J. Am. Chem.
Soc. 1995, 117, 6635. (d) Ruscic, B.; Litorja, M.; Asher, R. L. J. Phys.
Chem. A 1999, 103, 8625.

(4) (a) Feller, D.; Dixon, D. A. J. Phys. Chem. A **2000**, 104, 3048. (b) Petersson, G. A.; Al-Laham, M. A. J. Am. Chem. Soc. **1989**, 111, 1256. (c) Hu, C. H. Chem. Phys. Lett. **1999**, 309, 81.

(5) Schwartz, R. L.; Davico, G. E.; Ramond, T. M.; Lineberger, W. C. J. Phys. Chem. A **1999**, 103, 8213.

(6) Nguyen, M. T.; Kerins, M. C.; Hegarty, A. F.; Fitzpatrick, N. J. Chem. Phys. Lett. 1985, 117, 295.

(7) Carter, E. A.; Goddard, W. A. J. Chem. Phys. 1988, 88, 1752.

(8) Gutsev, G. L.; Ziegler, T. J. Phys. Chem. 1991, 95, 7220.

(9) Russo, N.; Silicia, E.; Toscano, M. J. Chem. Phys. 1992, 97, 5031.

(10) Barden, C. J.; Schaefer, H. F. J. Chem. Phys. 2000, 112, 6515.

(11) Hajgato, B.; Nguyen, H. M. T.; Veszpremi, T.; Nguyen, M. T. Chem. Phys. Phys. Chem. 2000, 5, 5041.

(12) Sendt, K.; Bacskay, G. B. J. Chem. Phys. 2000, 112, 2227.

(13) Cheong, B. S.; Cho, H. G. J. Phys. Chem. A 1997, 101, 7901.

- (14) Lee, E. P. F.; Dyke, J. M.; Wright, T. G. Chem. Phys. Lett. 2000, 326, 143.
 - (15) Dixon, D. A.; Peterson, K. A. J. Chem. Phys. 2001, 115, 6327.

(16) McKee, M. L.; Michl, J. J. Phys. Chem. A 2002, 106, 8495.

(17) Mueller, P. H.; Rondan, N. G.; Houk, K. N.; Harrison, J. F.; Hooper,

D.; Willen, B. H.; Liebman, J. F. J. Am. Chem. Soc. 1981, 103, 5049.
(18) Seburg, R. A.; Hill, B. T.; Squires, R. R. J. Chem. Soc., Perkin Trans. 2, 1999, 2249.

(19) Nguyen, T. L.; Kim, G. S.; Mebel, A. M.; Nguyen, M. T. Chem. Phys. Lett. 2001, 349, 571.

(20) Pau, C. F.; Hehre, W. J. J. Phys. Chem. 1982, 86, 1252.

(21) NIST Chemistry Webbook, 2005. See the URL: http://webbok.

nist.gov. Gurvich, L. V.; Veyts, I. V.; Alcock, C. B. *Thermodynamic Properties of Individual Substances*, 4th ed.; Hemisphere Publishing Corp.: New York, 1991; Vol. 2.

(22) Liu, X.; Gross, M. L.; Wenthold, P. G. J. Phys. Chem. A. 2005, 109, 2183. See also ref 17 in this reference.

(23) Pople, J. A.; Raghavachari, K.; Frisch, M. J.; Binkley, J. S.; Schleyer, P. v. R. *J. Am. Chem. Soc.* **1983**, *105*, 6389.

(24) Reid, D. L.; Hernandez, J.; J.; Warkentin, J. J. Phys. Chem. A 2000, 104, 3398.

(25) Wesdemiotis, C.; McLafferty, F. W. J. Am. Chem. Soc. 1987, 109, 4760.

(26) Smith, B. J.; Nguyen, M. T.; Bouma, W. J.; Radom, L. J. Am. Chem. Soc. 1991, 113, 6452.

(27) Yadav, J. S.; Goddard, J. D. J. Chem. Phys. 1986, 85, 3975.

(28) Sulzle, D.; Drewello, T.; van Baar, B. L. M.; Schwarz, H. J. Am. Chem. Soc. 1988, 110, 8330.

(29) Suh, D.; Pole, D. L.; Warkentin, J.; Terlouw, J. K. Can. J. Chem. 1996, 74, 544.

(30) McGibbon, G. A.; Burgers, P. C.; Terlouw, J. K. Int. J. Mass Spectrom. Ion Proc. 1994, 136, 191.

(31) Ortman, B. J.; Hauge, R. H.; Margrave, J. L.; Kafafi, Z. H. J. Phys. Chem. **1990**, *94*, 7973.

(32) (a) Lahem, D.; Flammang, R.; Nguyen, M. T. Chem. Phys. Lett. 1997, 270, 93. (b) Le, T. H.; Nguyen, T. L.; Lahem, D.; Flammang, R.;

Nguyen, M. T. Phys. Chem. Chem. Phys. 1999, 1, 755.

(33) Feller, D.; Peterson, K. A. J. Chem. Phys. 1998, 108, 154.

- (34) Feller, D.; Peterson, K. A. J. Chem. Phys. 1999, 110, 8384.
- (35) Feller, D. J. Chem. Phys. 1999, 111, 4373.

(36) Feller, D.; Dixon, D. A. J. Phys. Chem. A 2000, 104, 3048.

(37) (a) Feller, D.; Dixon, D. A. J. Chem. Phys. 2001, 115, 3484. (b)
Dixon, D. A.; Feller, D.; Peterson, K. A. J. Phys. Chem. A 2005, 109, 4073.
(c) Dixon, D. A.; de Jong, W. A.; Peterson, K. A.; Christe, K. O.;
Schrobilgen, G. J. J. Am. Chem. Soc. 2005, 127, 8627.

(38) Dixon, D. A.; Feller, D.; Peterson, K. A. J. Chem. Phys. 2001, 115, 2576.

(39) Ruscic, B.; Wagner, A. F.; Harding, L. B.; Asher, R. L.; Feller, D.; Dixon, D. A.; Peterson, K. A.; Song, Y.; Qian, X.; Ng, C.; Liu, J.; Chen, W.; Schwenke, D. W. J. Phys. Chem. A **2002**, *106*, 2727.

(40) Gaussian 03, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc.: Wallingford CT, 2004.

(41) Werner, H.-J.; Knowles, P. J.; Amos, R. D.; Bernhardsson, A.; Berning, A.; Celani, P.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Hampel, C.; Hetzer, G.; Korona, T.; Lindh, R.; Lloyd, A. W.; McNicholas, S. J.; Manby, F. R.; Meyer, W.; Mura, M. E.; Nicklass, A.; Palmieri, P.; Pitzer, R. M.; Rauhut, G.; Schütz, M.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T. MOLPRO-2002, a package of initio programs. Universität Stüttgart, Stüttgart, Germany, and University of Birmingham, Birmingham, U.K., 2002.

(42) Rittby, M.; Bartlett, R. J. J. Phys. Chem. 1988, 92, 3033.

(43) Knowles, P. J.; Hampel, C.; Werner, H.-J. J. Chem. Phys. 1994, 99, 5219.

(44) Deegan, M. J. O.; Knowles, P. J. Chem. Phys. Lett. 1994, 227, 321.

(45) Peterson, K. A.; Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1994, 100, 7410.

(46) (a) Peterson, K. A.; Dunning, T. H., Jr., J. Chem. Phys. 2002, 117, 10548.
(b) Woon, D. E.; Dunning, T. H., Jr., J. Chem. Phys. 1993, 98, 1358.

(47) (a) Helgaker, T.; Klopper, W.; Koch, H.; Nagel, J. J. Chem. Phys.

1997, *106*, 9639. (b) Halkier, A.; Halgaker, T.; Jørgensen, P.; Klopper, W.; Koch, H.; Olsen, J.; Wilson, A. K. *Chem. Phys. Lett.* **1998**, *286*, 243.

(48) Davidson, E. R.; Ishikawa, Y.; Malli, G. L. Chem. Phys. Lett. 1981, 84, 226.

(49) Moore, C. E. Atomic energy levels as derived from the analysis of optical spectra, Volume 1, H to V; U.S. National Bureau of Standards Circular 467, U.S. Department of Commerce, National Technical Information Service, COM-72–50282; NBS: Washington, DC, 1949.

(50) Grev, R. S.; Janssen, C. L.; Schaefer, H. F., III. J. Chem. Phys. 1991, 95, 5128.

(51) Chase, M. W., Jr.; NIST-JANAF Tables, 4th ed., J. Phys. Chem. Ref. Data, Mono. 9, Suppl. 1 1998.

(52) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. **1997**, 106, 1063.

(53) (a) Shavitt, I, *Tetrahedron* **1985**, *41*, 1531. (b) Goddard, W. A. *Science* **1985**, 227, 917. (c) Schaefer, H. F. *Science* **1986**, *231*, 1100.

(54) (a) Bauschlicher, C. W.; Taylor, P. R. J. Chem. Phys. **1986**, 85, 6510. (b) Bauschlicher, C. W.; Langhoff, S. R.; Taylor, P. R. J. Chem. Phys. **1987**, 87, 387.

(55) Cramer, C. J.; Dulles, F. J.; Storer, J. W.; Worthington, S. E. Chem. Phys. Lett. **1994**, 218, 387.

(56) Comeau, D. C.; Shavitt, I.; Jensen, P.; Bunker, P. R. J. Chem. Phys. 1989, 90, 9491.

(57) Pople, J. A.; Schleyer, P. v. R. Chem. Phys. Lett. 1986, 129, 279.

(58) Watts, J. D.; Bartlett, R. J. J. Chem. Phys. 1990, 93, 6140.

(59) Jensen, C. L.; Schaefer, H. F. Theor. Chim. Acta 1991, 79, 1.

(60) Feller, D.; Dixon, D. A. J. Chem. Phys. 2001, 115, 3484.

(61) Li, X.; Piecuch, P.; Paldus, J. *Chem. Phys. Lett.* **1994**, 224, 267.
 (62) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassilov, V.; Pople,

J. A. J. Chem. Phys. **1998**, 109, 7764.

(63) Kamiya, K.; Morokuma, K. J. Chem. Phys. **1991**, 91, 7287.

(64) Bouma, W. J.; Burgers, P. C.; Holmes, J. L.; Radom, L. J. Am.

Chem. Soc. **1986**, 108, 1767. (65) Clouthier, D. J.; Ramsay, D. A. Annu. Rev. Phys. Chem. **1983**, 34, 31.

(66) Bruna, P. J.; Hachey, M. R. J.; Grein, F. J. Phys. Chem. 1995, 99, 16576.

(67) Wiberg, K. B.; Crocker, L. S.; Morgan, K. M. J. Am. Chem. Soc. 1991, 113, 3447.

(68) (a) Frenkel, M.; Kabo, G. J.; Marsh, K. N.; Roganov, G. N.; Wilhoit, R. C. *Carbene Thermodynamics of Organic Compounds in the Gas State*; TRC Data Series, TRC: College Station: TX, 1994. (b) Chao, J.; Wilhoit,

R. C.; Hall, K. R. *Thermochim. Acta* **1980**, *41*, 41. (c) Dolliver, M. A.; Gresham, T. L.; Kistiakowsky, G. B.; Smith, E. A.; Vaughan, W. E. *J. Am. Chem. Soc.* **1938**, *60*, 440.

(69) Sander, S. P.; Friedl, R. R.; Ravishankara, A. R.; Golden, D. M.; Kolb, C. E.; Kurylo, M. J.; Huie, R. E.; Orkin, V. L.; Molina, M. J.; Moortgat, G. K.; Finlayson-Pitts, B. J. *Chemical Kinetics and Photochemical* Data for Use in Atmospheric Studies: Evaluation Number 14; JPL Publication 02-25, National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, 2003. http://jpldataeval.jpl.nasa.gov/pdf/JPL-02-25-rev02.pdf.

2003. http://jpldataeval.jpl.nasa.gov/pdf/JPL-02-25-rev02.pdf.
(70) Huang, C. L.; Chien, V.; Ni, C. K.; Kung, A. H.; Chen, I. C, J. Phys. Chem. A 2000, 104, 10362, and references therein.